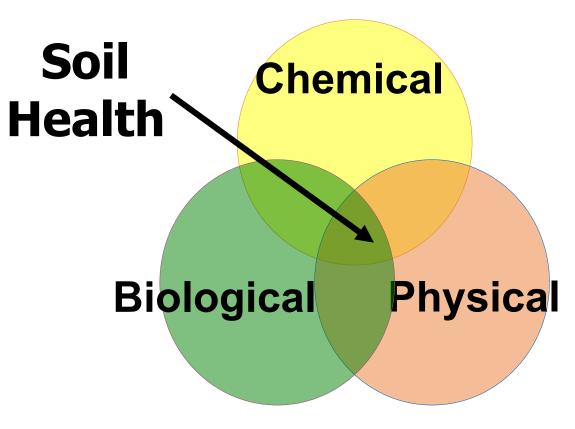
# Soil Health Management

John Idowu Extension Agronomist, June 8<sup>th</sup>, 2023 New Mexico State University Extension Plant Sciences

Contact: John Idowu Email: jidowu@nmsu.edu Phone: 575-646-2571



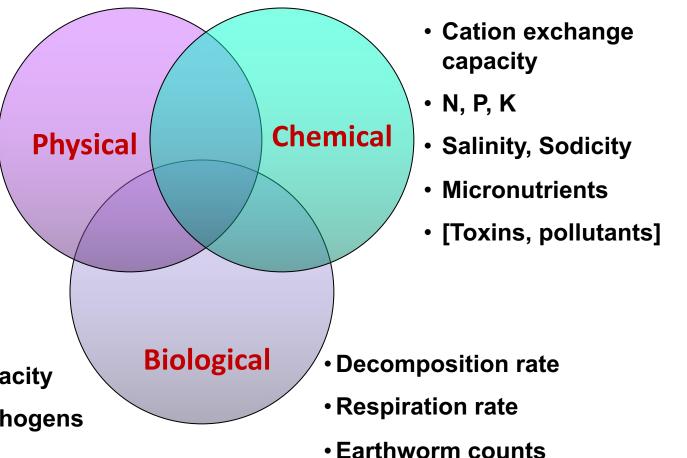

# What is Soil Health (Quality)?

- Ability of the soil to support crop growth ... (Power & Myers, 1989)
- Capacity of the soil to function in a productive and sustained manner ... (NCR-59 Madison WI, 1991)
- The capability of the soil to produce safe and nutritious crop .... (Parr et al., 1992)
- Fitness for use (Pierce & Larson 1993)



## Approach to Soil Health

All Soil Components are Equally Important






# Soil Health Indicators (Measurements)

- Bulk density
- Penetration resistance
- Aggregate stability
- Water infiltration rate
- Water holding capacity
- Pore size distribution

- Soil disease suppressive capacity
- Beneficial organisms and pathogens
- N mineralization rate (PMN)



• Organic matter (Active, Passive, etc.)



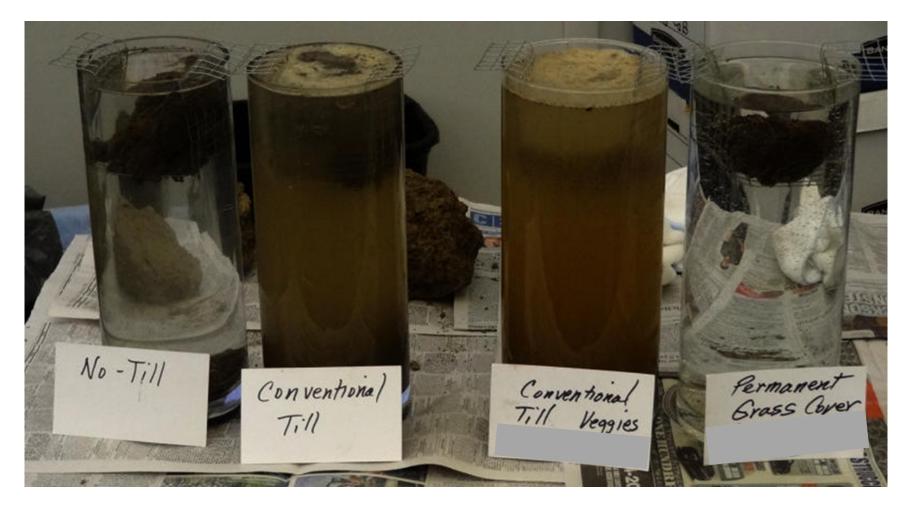
## Physical issues

- Poor aggregation how well the soil binds together
- Low water Retention how much water the soil can retain
- Field compaction how tightly the soil is packed together





# Aggregation


#### Affects

- Soil erosion by water and wind
- Pore size distribution (water movement/retention)
- Drought tolerance of soils
- Root growth and proliferation
- Soil aeration





## Aggregate Stability and Soil Management

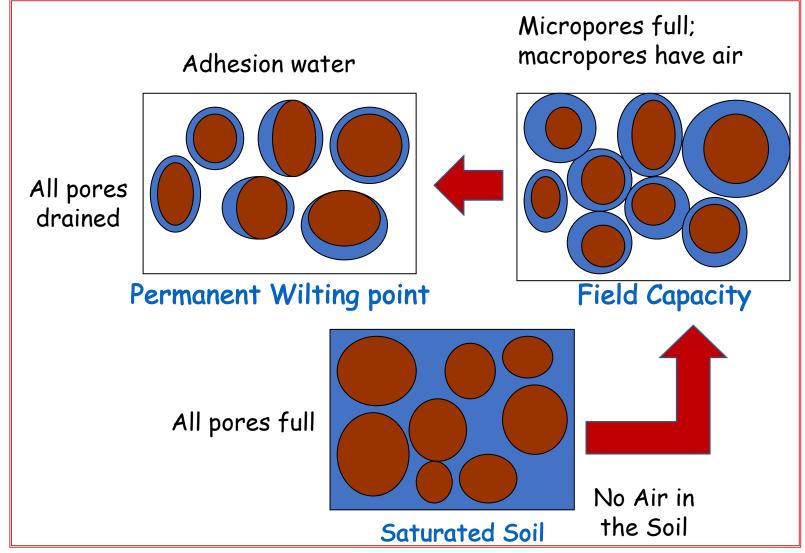




BE BOLD. Shape the Future. New Mexico State University aces.nmsu.edu

# Water retention in the Soil

# Affects


Plant water availability

Susceptibility to drought

Yield of crops



#### Soil Water Availability





#### Soil Water Availability – Available Water Capacity

• Available Water Capacity (AWC) – the difference between the water

held at field capacity and the permanent wilting point

#### AWC = FC - PWP

#### • AWC is soil dependent – function of (Texture, Structure, Organic Matter, Porosity)



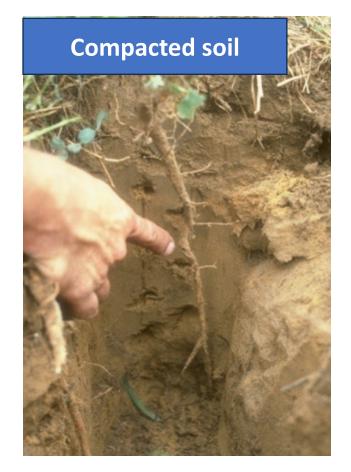
## Availability of water in relation to soil texture

|                        | Available Water Capacity by Soil Texture |           |  |                        |                   |
|------------------------|------------------------------------------|-----------|--|------------------------|-------------------|
|                        | Textural Class                           |           |  |                        |                   |
|                        | Coarse sand                              | 0.25-0.75 |  |                        |                   |
| ases                   | Fine sand                                | 0.75-1.00 |  |                        |                   |
|                        | Loamy sand                               | 1.10-1.20 |  |                        | Water incre       |
| incre                  | Sandy Ioam                               | 1.25-1.40 |  | crea;                  | at <b>SILT LC</b> |
| Clay content increases | Fine sandy loam                          | 1.50-2.00 |  | Sand content increased | the               |
|                        | Silt loam                                | 2.00-2.50 |  |                        |                   |
|                        | Silty clay loam                          | 1.80-2.00 |  | and o                  |                   |
|                        | Silty clay                               | 1.50-1.70 |  | Ň                      |                   |
|                        | Clay                                     | 1.20-1.50 |  |                        |                   |

Water increases to a maximum at **SILT LOAM TEXTURE** and then decreases

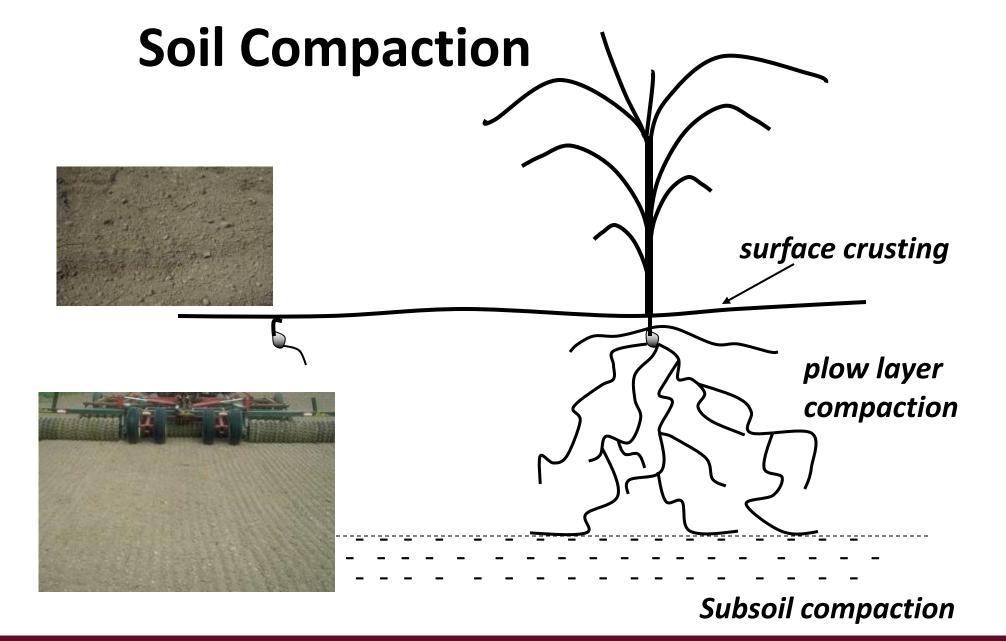


# Compaction


# Affects

- Water movement
- Water holding capacity
- Root growth and proliferation
- Soil aeration

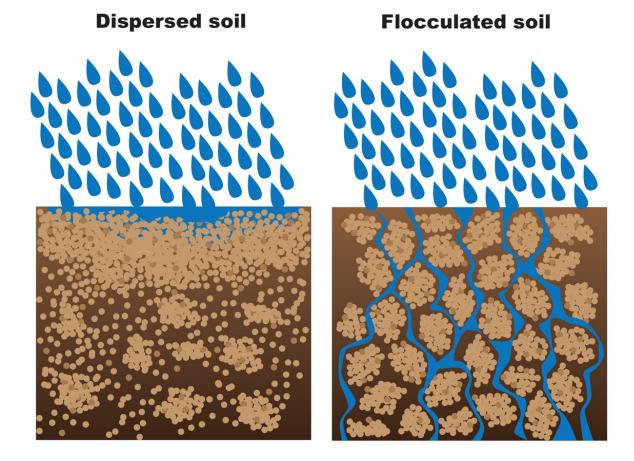



#### Roots in loose or compacted soil







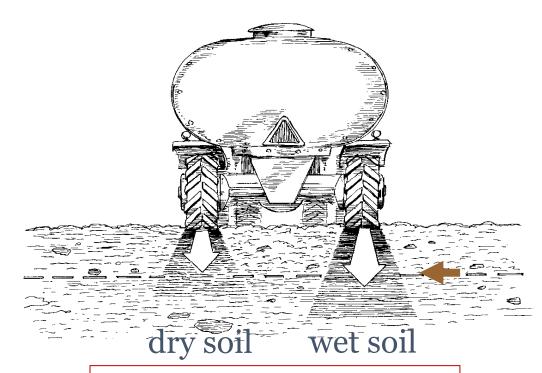

BE BOLD. Shape the Future. New Mexico State University aces.nmsu.edu





BE BOLD. Shape the Future. New Mexico State University aces.nmsu.edu

Surface Crusting




To address surface crusting:

- Managing organic matter in the topsoil
- Surface Mulching/residue
- Adding organic amendments



## How Subsurface Compaction Occurs



Damage is greatestwhen soils are wetwhen loads are high





#### **Compaction Alleviation - Subsoiling**







BE BOLD. Shape the Future. New Mexico State University aces.nmsu.edu

## Compaction Alleviation - Tillage Radish: Bio-drilling





BE BOLD. Shape the Future. New Mexico State University aces.nmsu.edu

# **Compaction Prevention**

- Avoid tillage of wet soils
- Use wider tires, dual tires
- Maintain minimum tire inflation
- Avoid over-sized equipment
- Combine field operations
- Add organic matter to the soil
- Practice controlled traffic







# Chemical aspects of soil health

- Nutrient sufficiency
- Soil salinity levels/Sodium issues
- Water salinity levels





# **Resolving Chemical Issues**

## Soil Testing is Important !!!

- Helps to know what is in your soil
- Helps to plan how much nutrients to apply
- Nutrient needs vary with soil and crop
- Helps to know if your soil is building up salts
- Will let you know if your management is improving, degrading, or maintaining your soil



# Biological aspects of soil health

- Amount Soil Organic Matter
- Soil Microbial Activity
- Diversity of Flora and Fauna
- Soil Nitrogen Mineralization
- Organic Matter Decomposition
- Soil Borne Pathogens



# Soil Organisms

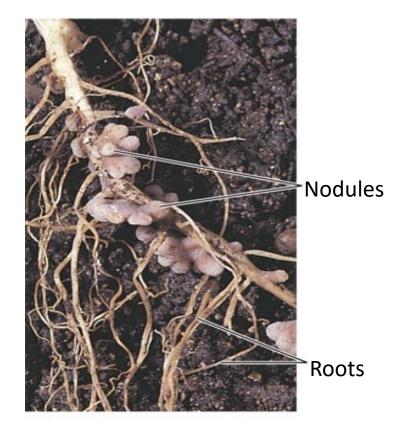
In one teaspoon of soil



| • | Bacteria   | 100 million to 1 billion                                                 |
|---|------------|--------------------------------------------------------------------------|
| • | Fungi      | 6-9 ft fungal strands put end to end                                     |
| • | Protozoa   | Several thousand flagellates & amoeba<br>One to several hundred ciliates |
| • | Nematodes  | 10 to 20 bacterial feeders and a few fungal feeders                      |
| • | Arthropods | Up to 100                                                                |
| • | Earthworms | 5 or more                                                                |



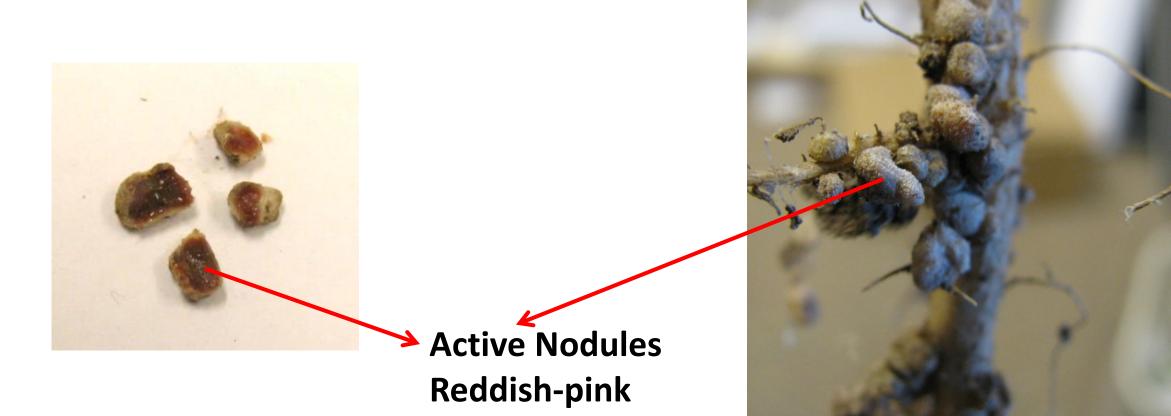
# Healthy soils maintain a diverse community of soil organisms that:


- Suppress plant disease, and insect and weed pests;
- Form beneficial symbiotic associations with plant roots
  - Mycorrhizae, Rhizobium
- Recycle essential plant nutrients
- Improve soil structure for water and nutrient retention
- Ultimately, increase grower profits and protect the environment



### Nitrogen Fixation Through Legumes (making nitrate-N available to crops)

- Examples of legumes are alfalfa, clovers, beans
- Bacteria that make nitrate in plant roots with plants are called Rhizobium
- Nitrogen come from the soil air (79% N<sub>2</sub> in soil)
- It is a relationship of give and take
- Plants supply bacteria with food and bacteria give back nitrate to plants


Symbiotic = up to 270 lb N/ac/year Non-symbiotic = up to 20 lbs N/ac/year





## Sesbania Nodules

• Sesbania used as green manure in an organic rotation experiment





# Potential of legumes to add N to Soil

Summer green legume experiment conducted in Las Cruces, NM under irrigated system

**BE BOLD.** Shape the Future. **New Mexico State University** 

aces.nmsu.edu

| Cover Crop     | C:N | Nitrogen (Ib N/ac) | Biomass (t/ac) |  |
|----------------|-----|--------------------|----------------|--|
| Sesbania       | 25  | 248                | 7.3            |  |
| Cowpea I&C     | 15  | 221                | 3.7            |  |
| Lablab         | 14  | 192                | 3.3            |  |
| Cowpea CA      | 12  | 182                | 2.7            |  |
| Cowpea CC36    | 18  | 150                | 2.9            |  |
| Bush bean      | 10  | 146                | 1.9            |  |
| Pigeon Pea     | 10  | 131                | 1.6            |  |
| Guar Durga     | 15  | 124                | 2.3            |  |
| Tepary Bean    | 14  | 120                | 2.0            |  |
| Lima Bean      | 12  | 119                | 1.8            |  |
| Green Bean     | 15  | 82                 | 1.5            |  |
| Guar Evergreen | 18  | 79                 | 1.6            |  |
| Mung Bean      | 21  | 70                 | 1.8            |  |
| Adzuki Bean    | 11  | 70                 | 1.0            |  |
| Moth Bean      | 15  | 69                 | 1.3            |  |



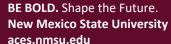
#### Barley after sesbania summer legume





#### Oats after sesbania summer legume








#### Wheat after sesbania summer legume





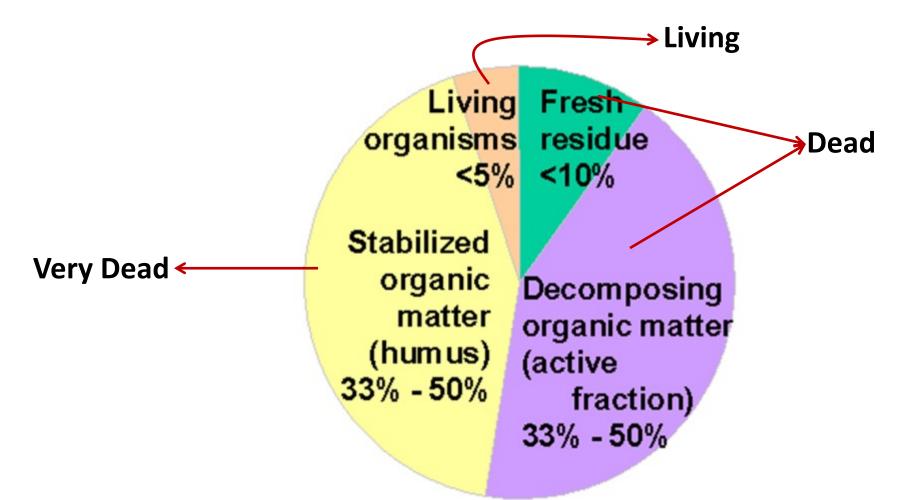


## Rye after sesbania summer legume





# Improving Soil Health


Long-term Thinking and Strategy

**Basic Methods (Toolbox)** 

- Organic Matter Addition & Management
- Tillage Management (Reducing tillage)
- Cover Cropping
- Crop Rotation



# Types of organic matter





# Organic Matter

#### —Living —

- Organisms of various sizes such as bacteria, fungi, nematodes, earthworms, mites, springtails, moles, etc.
- Plant roots

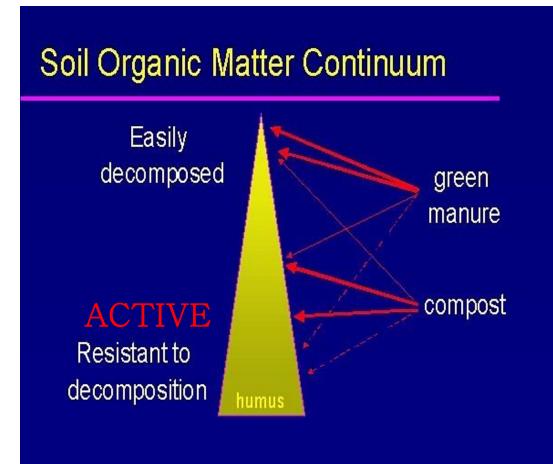






# **Organic Matter → Active Fraction**

#### -Dead -


Recently dead soil organisms and crop residues provide the food (energy and nutrients) for soil organisms to live and function. Also called "active" or "particulate" organic matter.





# **Active Fraction**

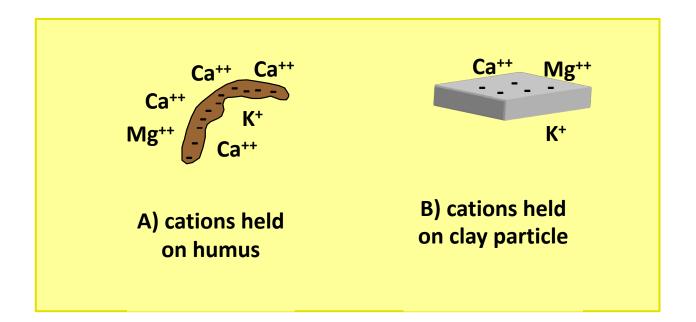
- 10 to 30% of the soil organic matter (active fraction) is responsible for maintaining soil microorganisms.
- The active fraction of organic matter is most susceptible to soil management practices.
- The active fraction drives the soil microbial population and activities





# Organic Matter

#### -Very Dead -

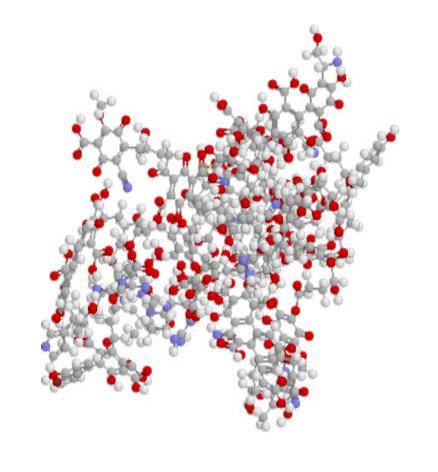

#### Well-decomposed organic matter → Humus Humus contains negative charges





#### **Stable Organic Matter - Humus**

Cation nutrients are held on negatively charged organic matter and clay






BE BOLD. Shape the Future. New Mexico State University aces.nmsu.edu

### **Stable Organic Matter -Humus**

- Over time, soil organic compounds become stabilized and resistant to further changes by microorganisms
- Stabilized organic matter acts like a sponge and can absorb 2-6 times its weight in water





# **Organic Matter**

- Adding organic matter improves the nutrient supply of the soil
- tends to reduce pesticide toxicity
- increases microbial degradation of pesticides
- increases soil biological activities
- improves soil structure
- Improves water holding capacity
- prevents soil erosion





#### Nutrient content of organic materials

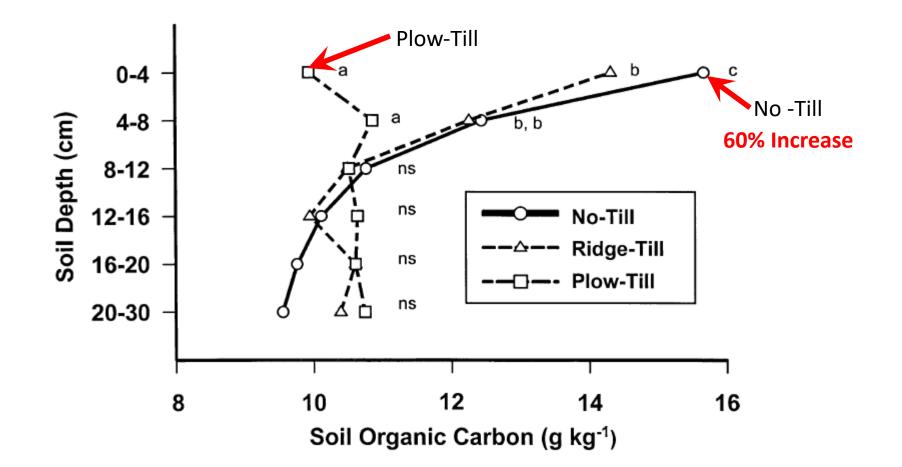
| Organic Material   | Nutrient Content* |                                       | Fertilizer Pounds Needed for<br>1 Pound of Nutrient** |            |
|--------------------|-------------------|---------------------------------------|-------------------------------------------------------|------------|
|                    | Percent N         | Percent P <sub>2</sub> O <sub>5</sub> | Ν                                                     | $P_2O_5$   |
| Alfalfa hay        | 2.3               | 0.3                                   | 43                                                    | 333        |
| Blood meal         | 12.0              | 3.0                                   | 8                                                     | 33.3       |
| Bone meal          | 3.0               | 28.0                                  | 33                                                    | 3.5        |
| Compost, garden    | 1.0               | 0.2                                   | 100                                                   | 500        |
| Cottonseed meal    | 7.0               | 1.0                                   | 14                                                    | 100        |
| Fish meal          | 12.0              | 3.0                                   | 8                                                     | 33         |
| Manure - hen       | 1.1               | 0.8                                   | 98                                                    | 125        |
| Manure - horse     | 0.7               | 0.3                                   | 143                                                   | 333        |
| Manure - pig       | 0.5               | 0.3                                   | 200                                                   | 333        |
| Manure - rabbit    | 2.4               | 1.4                                   | 42                                                    | 71         |
| Manure - sheep     | 0.7               | 0.3                                   | 143                                                   | 333        |
| Manure - steer     | 0.7               | 0.3                                   | 143                                                   | 333        |
| Peanut shells      | 3.6               | 0.7                                   | 28                                                    | 143        |
| Rock phosphate     | 0.0               | 0.5                                   | 0                                                     | 200        |
| Sewage sludge      | 5.0               | 3.0                                   | 20                                                    | 33         |
| Sunflower seed oil | 5.5               | 1.0                                   | 18                                                    | 13         |
| Wood ashes         | Do Not Use        | Do Not Use                            | Do Not Use                                            | Do Not Use |

BE BOLD. Shape the Future. New Mexico State University aces.nmsu.edu

## Reduced Tillage Goals

- Enhance soil quality
  - $\odot$  Conserve soil organic matter
  - $\odot$  Conserve soil moisture
- Reduce erosion
- Reduce fuel use
- Optimize weed control
- Maintain yields

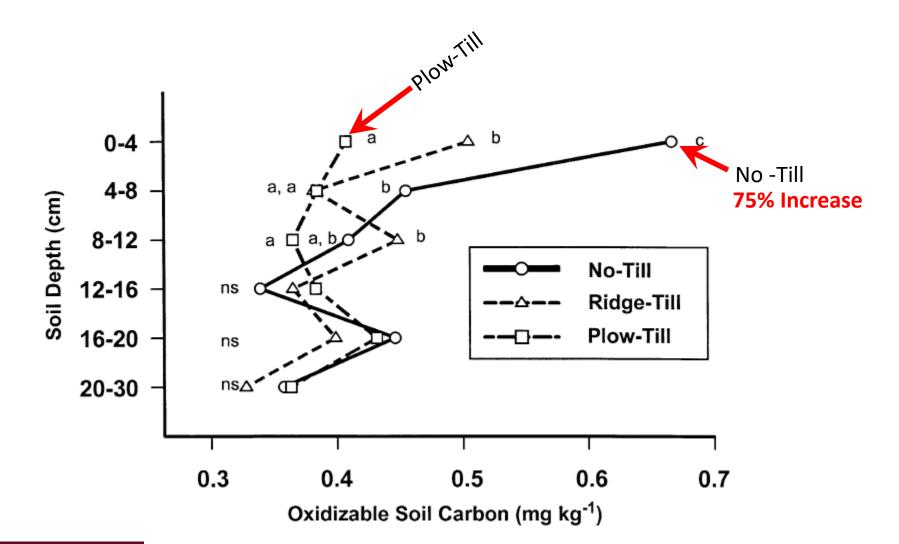





#### **Reduced Tillage Facts**

- Depends on equipment (capital intensive)
- Depends on crop (works better for large seeds)
- Little difference between full width tillage and reduced tillage in terms of yield (short-term)
- Labor savings during early season field prep.
- Investment in long term soil health




#### **Tillage and Organic Carbon**



BE BOLD. Shape the Future. New Mexico State University aces.nmsu.edu Soil organic carbon by depth after 9 years of no-till, ridge-till, or plow-till treatment

L.M. Zibilske et al. / Soil & Tillage Research 66 (2002) 153–163

#### **Tillage and Active Carbon**

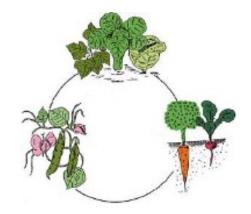


BE BOLD. Shape the Future. New Mexico State University aces.nmsu.edu

STAT

Oxidizable carbon by depth after 9 years of no-till, ridge-till, or plow-till treatment

L.M. Zibilske et al. / Soil & Tillage Research 66 (2002) 153–163


### **Cover Crops**

- Cover crops can help prevent erosion
- reduce leaching of nutrients by serving as catch crops
- can help alleviate soil compaction
- can help suppress perennial and winter annual weeds
- can add organic matter to the soil
  <u>Important:</u> what is your goal?
  - selection of proper cover crop
  - seeding time
  - good management techniques





#### **Crop Rotation**



- Good crop rotation can break the disease cycle
- Decrease pest pressure from insects, weeds, and diseases
- Enhances soil biological diversity
- Enhances sustainable cropping systems



# Merits/demerits of using proprietary products from different vendors

- Beware of "magical products"
- Query the science of the product
- Ask for University research on the product
- If you are convinced of the science, test out the product in a way that you can see the difference
- Evaluate the cost-to-benefit ratio of the product, especially those that need to be applied yearly







BE BOLD. Shape the Future. New Mexico State University aces.nmsu.edu